Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Poly[($\mu_{4}-1,2,3$-benzothiadiazole-7carboxylato)silver(I)]

Jiong-Peng Zhao and Fu-Chen Liu*

School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300191, People's Republic of China
Correspondence e-mail: fuchenliutj@yahoo.com

Received 11 June 2010; accepted 8 July 2010

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$; R factor $=0.041 ; w R$ factor $=0.075$; data-to-parameter ratio $=10.9$.

In the crystal structure of the title compound, $\left[\mathrm{Ag}\left(\mathrm{C}_{7} \mathrm{H}_{3}-\right.\right.$ $\left.\left.\mathrm{N}_{2} \mathrm{O}_{2} \mathrm{~S}\right)\right]_{n}$, the Ag^{I} atom is coordinated by two N atoms and three O atoms of four organic ligands forming a distorted square pyramid. The carboxylate group acts as a bidentate ligand on one Ag^{I} atom and as a bridging group for a symmetry-related Ag^{1} atom, forming a dimer. Futhermore, the two N atoms of two thiadiazole rings bridge a third symmetryrelated Ag^{I} atom, forming a six-membered ring. These two frameworks, $\mathrm{AgO}_{2} \mathrm{Ag}$ and $\mathrm{AgN}_{4} \mathrm{Ag}$, extend in three directions, forming a three-dimensionnal polymer. The whole polymer is organized around inversion centers.

Related literature

For a metal-organic complex with interesting properties, see: Yaghi et al. (2003). For related structures, see: Chen \& Mak (2005); Ng \& Othman (1997); Brammer et al. (2002).

Experimental

Crystal data
$\left[\mathrm{Ag}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right)\right]$
$M_{r}=287.04$
Monoclinic, $P 2_{1} / \mathrm{c}$
$a=5.8332$ (12) \AA
$b=14.786$ (3) A
$c=8.6377$ (17) \AA
$\beta=93.63$ (3) ${ }^{\circ}$

$$
\begin{aligned}
& V=743.5(3) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=2.95 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& 0.20 \times 0.18 \times 0.17 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku SCXmini diffractometer
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.630, T_{\max }=1.000$
6233 measured reflections 1291 independent reflections 1144 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.044$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041 \quad 118$ parameters
$w R\left(F^{2}\right)=0.075$
H -atom parameters constrained
$S=1.16$
1291 reflections
$\Delta \rho_{\max }=1.26 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.63 \mathrm{e}^{-3}$

Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors acknowledge financial support from Tianjin Municipal Education Commission (grant No. 20060503).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2580).

References

Brammer, L., Burgard, M. D., Eddleston, M. D., Rodger, C. S., Rath, N. P. \& Adams, H. (2002). CrystEngComm, 4, 239-248.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Chen, X.-D. \& Mak, T. C. W. (2005). Chem. Commun. pp. 3529-3531.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Ng, S. W. \& Othman, A. H. (1997). Acta Cryst. C53, 1396-1400.
Rigaku (1998). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA.
Rigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. \& Kim, J. (2003). Nature (London), 423, 705-714.

supplementary materials

Acta Cryst. (2010). E66, m974 [doi:10.1107/S1600536810027029]

Poly[$\left(\mu_{\mathbf{4}} \mathbf{- 1 , 2 , 3 - b e n z o t h i a d i a z o l e - 7 - c a r b o x y l a t o) s i l v e r (I)] ~}\right.$

J.-P. Zhao and F.-C. Liu

Comment

Metal organic complexes have drawn much attentions owing to their various structures and their interesting properties (Yaghi et al., 2003). As a bridging ligand benzo[d][1,2,3]thiadiazole-7-carboxylate (L) with three types of heteroatoms has been less investigated. Here we reported the structure of the title complex.

In the title compound, Ag^{I} is coordinated by two N atoms and three oxygen atoms of four organic ligands forming a distorted square pyramid. The carboxylate group acts as a bidentate ligand on one silver atom and as a bridging group for a symmetry related silver forming a dimer. Futhermore the two nitrogen atoms of two thiadiazole rings bridge a third symmetry related Ag atom forming a six membered ring (Fig. 1). The Ag-O and $\mathrm{Ag}-\mathrm{N}$ distances are in good agreement with the values observed in related Ag^{I} complexes (Chen et al., 2005; Ng \& Othman, 1997; Brammer et al., 2002) . The thiadiazole groups bridge two Ag^{I} anions using two nitrogen atoms living the sulfur atoms uncoordinated. In the dimer formed by the carboxylate group, $\mathrm{Ag} \cdots \mathrm{Ag}$ distance is 3.1168 (12) \AA.

The two frameworks AgO 2 Ag and AgN 4 Ag extend in the three direction to form a three dimensionnal polymer (Fig. 2) .The whole polymer is organised around inversion centers.

Experimental

A mixture of $\mathrm{Ag}(\mathrm{I})$ nitrate (1.5 mmol), benzo[d][1,2,3]thiadiazole-7-carboxylate acid (0.75 mmol), in 10 ml water solvent was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 413 K for 48 h . Red crystals of the title complex were collected after the bomb was allowed to cool to room temperature. Yield 20% based on metal salte.

Refinement

Hydrogen atoms were included in calculated positions and treated as riding on their parent C atoms with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figures

Fig. 1. The coordinated mode of the metal ions. Ellipsoids are drawn at the 30% probability level. H atom have been omitted for clarity. [Symmetry codes: i $-x+1, y-1 / 2,-z+1 / 2$; ii $-x$, -$y+1,-z+1$; iii $-x+1,-y+1,-z+1$; iv $x-1,-y+3 / 2, z+1 / 2]$.

supplementary materials

Fig. 2. Packing view of the 3D structure viewed along the a axis. H atoms have been omitted for clarity.

Poly[($\mu_{4}-1,2,3$-benzothiadiazole-7-carboxylato)silver(I)]

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right)\right]$
$M_{r}=287.04$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=5.8332$ (12) \AA
$b=14.786$ (3) \AA
$c=8.6377(17) \AA$
$\beta=93.63(3)^{\circ}$
$V=743.5$ (3) \AA^{3}
$Z=4$
$F(000)=552$
$D_{\mathrm{x}}=2.564 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 6859 reflections
$\theta=3.5-27.7^{\circ}$
$\mu=2.95 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, yellow
$0.2 \times 0.18 \times 0.17 \mathrm{~mm}$

1291 independent reflections
1144 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.044$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=3.5^{\circ}$
$h=-6 \rightarrow 6$
$k=-17 \rightarrow 17$
$l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.075$
$S=1.16$

1291 reflections
118 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0199 P)^{2}+2.3752 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=1.26$ e \AA^{-3}
$\Delta \rho_{\min }=-0.63$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
Ag 1	$0.22834(8)$	$0.54824(3)$	$0.55500(6)$	$0.04253(19)$
S 1	$0.8176(2)$	$0.67965(9)$	$0.27803(16)$	$0.0309(3)$
O 2	$0.9762(7)$	$0.8433(3)$	$0.1625(4)$	$0.0393(10)$
N 1	$0.4925(7)$	$0.6364(3)$	$0.4372(5)$	$0.0285(10)$
O 1	$0.8634(7)$	$0.9824(3)$	$0.2134(5)$	$0.0437(11)$
N 2	$0.6579(8)$	$0.6012(3)$	$0.3649(5)$	$0.0305(11)$
C 1	$0.8499(10)$	$0.8983(4)$	$0.2247(6)$	$0.0341(13)$
C 5	$0.3213(9)$	$0.7828(4)$	$0.4920(6)$	$0.0303(13)$
H 5 A	0.2098	0.7576	0.5511	0.036^{*}
C 2	$0.6652(9)$	$0.8593(4)$	$0.3167(6)$	$0.0268(12)$
C 7	$0.6539(8)$	$0.7651(3)$	$0.3390(6)$	$0.0237(11)$
C 6	$0.4826(9)$	$0.7294(3)$	$0.4252(6)$	$0.0257(12)$
C3	$0.5022(9)$	$0.9111(4)$	$0.3794(6)$	$0.0315(13)$
H3A	0.5038	0.9732	0.3631	0.038^{*}
C4	$0.3315(9)$	$0.8741(4)$	$0.4679(6)$	$0.0328(13)$
H4A	0.2246	0.9119	0.5104	0.039^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ag 1	$0.0450(3)$	$0.0259(3)$	$0.0598(3)$	$-0.0019(2)$	$0.0278(2)$	$-0.0036(2)$
S 1	$0.0320(8)$	$0.0274(7)$	$0.0347(8)$	$0.0004(6)$	$0.0123(6)$	$-0.0004(6)$
O 2	$0.039(2)$	$0.041(2)$	$0.040(2)$	$0.0007(19)$	$0.0199(19)$	$0.0042(19)$
N 1	$0.028(2)$	$0.023(2)$	$0.034(3)$	$-0.0008(19)$	$0.005(2)$	$-0.001(2)$
O 1	$0.057(3)$	$0.033(2)$	$0.043(3)$	$-0.014(2)$	$0.016(2)$	$0.0093(19)$
N 2	$0.032(3)$	$0.022(2)$	$0.038(3)$	$-0.001(2)$	$0.006(2)$	$0.002(2)$
C 1	$0.037(3)$	$0.036(3)$	$0.030(3)$	$-0.012(3)$	$0.004(3)$	$0.003(3)$
C 5	$0.025(3)$	$0.028(3)$	$0.039(3)$	$-0.005(2)$	$0.011(2)$	$-0.004(2)$
C 2	$0.029(3)$	$0.029(3)$	$0.022(3)$	$-0.004(2)$	$0.000(2)$	$-0.001(2)$
C 7	$0.022(3)$	$0.026(3)$	$0.023(3)$	$-0.002(2)$	$0.001(2)$	$-0.002(2)$
C 6	$0.027(3)$	$0.027(3)$	$0.023(3)$	$-0.002(2)$	$0.001(2)$	$0.001(2)$
C 3	$0.041(3)$	$0.021(3)$	$0.033(3)$	$0.000(2)$	$0.006(3)$	$0.000(2)$

C 4	$0.031(3)$	$0.028(3)$	$0.041(3)$	$0.002(2)$	$0.010(3)$

Geometric parameters ($A,{ }^{\circ}$)

Ag1-N1	2.304 (4)	C1-C2	1.494 (7)
$\mathrm{Ag} 1-\mathrm{N} 2{ }^{\text {i }}$	2.396 (4)	C5-C4	1.367 (7)
$\mathrm{Ag} 1-\mathrm{O} 2{ }^{\text {ii }}$	2.402 (4)	C5-C6	1.383 (7)
$\mathrm{Ag} 1-\mathrm{O} 1^{\text {iii }}$	2.540 (4)	C5-H5A	0.9300
Ag 1 - $\mathrm{Ag} 1^{\text {iv }}$	3.1168 (12)	$\mathrm{C} 2-\mathrm{C} 3$	1.360 (7)
S1-C7	1.688 (5)	C2-C7	1.408 (7)
S1-N2	1.693 (4)	C7-C6	1.388 (7)
O2-C1	1.242 (7)	C3-C4	1.404 (7)
N1-N2	1.292 (6)	C3-H3A	0.9300
N1-C6	1.379 (6)	C4-H4A	0.9300
O1-C1	1.251 (7)		
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{N} 2^{\mathrm{i}}$	117.94 (15)	$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	116.4 (5)
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{O} 2{ }^{\text {ii }}$	103.64 (15)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	118.4 (5)
$\mathrm{N} 2{ }^{\text {i }}-\mathrm{Ag} 1-\mathrm{O} 2^{\mathrm{ii}}$	132.00 (14)	C4-C5-C6	117.6 (5)
N1—Ag1-O1 $1^{\text {iii }}$	85.52 (15)	C4-C5-H5A	121.2
$\mathrm{N} 2{ }^{\text {i }}-\mathrm{Ag} 1-\mathrm{O} 1^{\text {iii }}$	87.08 (14)	C6-C5-H5A	121.2
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Ag} 1-\mathrm{O} 1^{\text {iii }}$	120.64 (14)	C3-C2-C7	117.5 (5)
$\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{Ag} 1^{\text {iv }}$	135.00 (11)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	122.7 (5)
$\mathrm{N} 2{ }^{\text {i }}$ - $\mathrm{Ag} 1-\mathrm{Ag} 1^{\text {iv }}$	83.21 (11)	C7-C2- 1	119.7 (5)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Ag} 1-\mathrm{Ag} 1^{\text {iv }}$	83.74 (10)	C6-C7- C 2	119.4 (5)
$\mathrm{O} 1{ }^{\text {iii }}$ - $\mathrm{Ag} 1-\mathrm{Ag} 1^{\text {iv }}$	54.53 (10)	C6-C7-S1	108.9 (4)
C7-S1-N2	92.1 (2)	C2-C7-S1	131.7 (4)
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{Ag} 1^{\text {v }}$	97.2 (3)	N1-C6-C5	124.4 (5)
N2-N1-C6	113.3 (4)	N1-C6-C7	113.1 (4)
N2-N1-Ag1	121.7 (3)	C5-C6-C7	122.6 (5)
C6-N1-Ag1	124.8 (3)	C2-C3-C4	122.4 (5)
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{Ag} 1^{\text {vi }}$	116.2 (4)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	118.8
N1-N2-S1	112.7 (3)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	118.8
N1-N2-Ag1 ${ }^{\text {i }}$	115.7 (3)	C5-C4-C3	120.4 (5)
$\mathrm{S} 1-\mathrm{N} 2-\mathrm{Ag} 1^{\text {i }}$	127.6 (2)	C5-C4-H4A	119.8
O2-C1-O1	125.1 (5)	C3-C4-H4A	119.8

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x-1,-y+3 / 2, z+1 / 2$; (iii) $-x+1, y-1 / 2,-z+1 / 2$; (iv) $-x,-y+1,-z+1$; (v) $x+1,-y+3 / 2, z-1 / 2$; (vi) $-x+1, y+1 / 2,-z+1 / 2$.

Fig. 1

supplementary materials

Fig. 2

